

Acoustical Capacity Meter Acoustical Volume Meter

• Acoustical Capacity Meter (Combustion Chamber Capacity Meter)

Acoustical Volume Meter

Acoustic Measurement of Capacity/Volume

Now precision measurement under dry conditions is possible for any shape of object.

Acoustical Capacity Meter

(Combustion Chamber Capacity Meter)

- Regardless of the shape, the combustion chamber capacity can be measured by simply placing the capacity meter on the combustion chamber cavity of the cylinder head, as shown in the picture.
- Instead of using a spark plug of the assembled engine, special adapters are used to connect to the capacity meter so that the combustion chamber capacity can be measured.
- In the process of engine manufacturing or maintenance, the combustion chamber capacity can be measured in just two seconds in dry conditions.

CAPACITY Measurement Method

The target capacity is calculated based on a comparison with a Reference Standard. First, the capacity of the Reference Standard is measured, with the results providing the parameters for measuring the target. Once the calibration process is completed, the target capacity can be

Measurement Principle

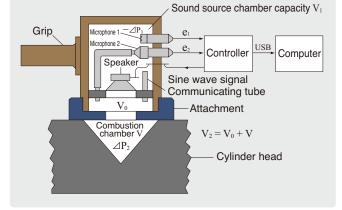
When the loudspeaker placed in the sound source chamber is driven by a sinusoidal signal (sine wave) as shown in the right figure, for the capacity V₁ of the sound source chamber and V₂ (the capacity V₀ including space in the attachment plus the capacity V of the object (the combustion chamber in the figure), ultra small changes in volume (Δ V) and pressure (sound) with the same absolute value, but of opposite phase, will occur inside each chamber.

The degree of change is inversely proportional to the capacity. These pressure changes are detected by electret condenser microphones, and the capacity V_2 is calculated from the ratio of the pressure change. The capacity (V) can be obtained by subtracting V_0 (space in the attachment) from V_2 .

 $\mathbf{P} \times \mathbf{V}^{\gamma} = \mathbf{const.}_{(\gamma)}$ is the ratio of specific heat for air, approx.1.4)

$$\frac{\Delta P_1}{P_0} = \gamma \frac{\Delta V}{V_1} \qquad \frac{\Delta P_2}{P_0} = \gamma \frac{\Delta V}{V_2}$$

Po: Pressure in the chamber (atmospheric pressure)


 ΔP_1 : Small pressure changes in the sound source chamber ΔP_2 : Small pressure changes in the space in the attachment and the object

$$\mathbf{V}_2 = \mathbf{V}_1 \ \frac{\Delta \mathbf{P}_1}{\Delta \mathbf{P}_2} (\mathbf{V}_1 : \text{const.}) \qquad \mathbf{V} = \mathbf{V}_2 - \mathbf{V}_0 \ (\mathbf{V}_0 : \text{const.})$$

measured repeatedly. Currently, to improve measurement precision, two or three Reference Standards are used for calibration. For example, for measuring target capacity of approximately 50 cm³, a measurement precision at ± 0.05 cm³ can be achieved.

Cross-sectional drawing

- Prior to the measurement, use a few types of reference standards for calibration and obtain the required parameters.
- Measurement is done by attaching the sound source chamber to the object.

Acoustical Volume Meter

Unlike the conventional method of the Archimedes principle (where the target object is immersed in water), this system allows volume measurement of the target object in dry conditions.

Even the volume of objects with complex shape can be measured accurately in a short time (approx. two seconds).

VOLUME **Measurement Method**

The target volume is calculated based on a comparison with a Reference Standard. First, the volume of the Reference Standard is measured, with the results providing the parameters for measuring the target. Once the calibration process is completed, the target volume can be measured

Measurement Principle

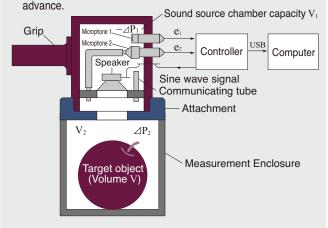
When the loudspeaker placed in the sound source chamber is driven by a sinusoidal signal (sine wave) as shown in the right figure, for the volume V_1 of the sound source chamber and V_2 (the volume of space in the attachment plus the space between the measurement enclosure and the object), ultra small changes in volume (ΔV) and pressure (sound) with the same absolute value, but of opposite phase, will occur inside each chamber. The degree of change is inversely proportional to the capacity. These pressure changes are detected by electret condenser microphones and the volume V2 is calculated from the ratio of the pressure change.

The volume (V) of the object can be obtained by subtracting V_2 from V₀ (space in attachment plus empty space in the measurement chambers).

 $\mathbf{P}\times\mathbf{V}^{\gamma}{=}\,\textbf{const.}$ (γ is the ratio of specific heat for air, approx.1.4)

$$\frac{\Delta P_1}{P_0} = \gamma \frac{\Delta V}{V_1} \qquad \frac{\Delta P_2}{P_0} = \gamma \frac{\Delta V}{V_2}$$

- Po: Pressure in the chamber (atmospheric pressure)


 \triangle Pi: Small pressure changes in the sound source chamber \triangle Pi: Small pressure changes in space in the attachment plus the space between the measurement enclosure and the object

$$\mathbf{V}_2 = \mathbf{V}_1 \quad \frac{\Delta \mathbf{P}_1}{\Delta \mathbf{P}_2} (\mathbf{V}_1 : \text{const.}) \qquad \mathbf{V} = \mathbf{V}_0 - \mathbf{V}_2 \ (\mathbf{V}_0 : \text{const.})$$

repeatedly. Currently, to improve measurement precision, two or three Reference Standards are used for calibration. For example, for measuring target volume of approximately 100 cm³, a measurement precision at ±0.1 cm³ can be achieved.

Cross-sectional drawing

- Prior to the measurement, use a few types of reference stndards for calibration.
- Put the object into the measurement enclosure for measurement.
- To measure the density, measure the mass of the object in

Specifications

	Acoustical Capacity Meter (Combustion Chamber Capacity Meter)	Acoustical Volume Meter
Capacity/ volume measurement: repeat precision	±0.05 cm ³ *1	±0.1 cm ³ *2
Required measurement time	Approx. 2 seconds (When number of analysis points is 1024. Units: one-second steps)	
Measurement frequency	15 to 99 Hz (variable, depends on the object)	
Numbers of analysis points	256 to 4 096 points (variable, in a power-of-two. Initial value: 1 024 points)	
Reference chamber: acoustic pressure in measurement tank	Approx. 94 to 134 dB (1 to 100 Pa rms)	
Reference chamber: internal dimension, capacity	ф90 mm x 91 (Н) mm	V₁ nealy equal to 570 cm³
Controller	Connected to a computer through a USB cable. 54 (H) x 150 (W) x 170 (D) mm, approx.400 g	
Consumption current	5 V, approx. 475 mA (approx. 2.4 VA)	
Available OS	Microsoft Windows 7 Professional 32 bit / 64 bit, 8.1 Pro 32 bit / 64 bit	
Accessories	Connection cable, USB cable AC adapter Software (CD-ROM)	 Connection cable, USB cable AC adapter Software (CD-ROM)
Options	 Reference standards For calibration, at least two reference standards are needed. 0 to 120 cm³ (in 5 cm³ increments) (Manufactured according to the capacity of the object.) Spark plug hole adapter (for assembled engines) 	 Reference standards For calibration, at least two reference standards are needed. Measurement enclosure Manufacture the enclosure according to the dimensions of the target object.

*1 When a volume of 50 cm³ is measured under standard environmental conditions (20 °C, 50 %) (for a cylinder head) *2 When a volume of 100 cm³ is measured under standard environmental conditions (20 °C, 50 %)

SRION Co., Ltd. is recognized by the JCSS which uses ISO/IEC 17025 (JIS Q 17025) as an accreditation standard and bases its accreditation scheme on ISO/IEC 17011. JCSS is operated by the accreditation body (IA Japan) which is a signatory to the Asia Pacific Laboratory Accreditation Cooperation (APLAC) as well as the International Laboratory Accreditation Cooperation (ILAC). The Quality & Environmental Management system Center of RION Co., Ltd.

st Windows is a trademark of Microsoft Corporation. \sst Specifications subject to change without notice.

Distributed by:

3-20-41, Higashimotomachi, Kokubunji, Tokyo 185-8533, Japan Tel: +81-42-359-7888 Fax: +81-42-359-7442

This leaflet is printed with environmentally friendly UV ink on recycled paper.